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Abstract

Numerous techniques have been developed contributing to the tools of solving the

random coefficients logit model. Following the developed methods, I modify the prior

distribution assumption on the aggregate demand shock and demonstrate estimating

demand by sequentially updating the market share inversion process and two MCMC

techniques. In particular, I present a practitioner’s guide including details regarding

the implementation of the algorithms.
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1 Introduction

Differentiate products depend on their heterogeneous characteristics which are the foremost

factor that stimulates demand. Comparing to homogeneous products, the differentiability

yields distinguishing features that lead to the forming of market power of a firm.

In general, the competition of natural resources forms homogeneous markets such as

offshore oil drilling (Hendricks, Porter and Wilson, 1994) and gas leases. instead of based

on oil or gas characteristics, the choice decision in such markets often hinges on how infor-

mative the competitors are. In most common markets such as grocery stores, wholesalers,

or even online stores like eBay or Amazon, we can categorize products by their type and

functionalities. However, it is their idiosyncratic properties that influence our final choice

decisions.

Demand estimation has become an important aspect to probe consumer behavior. From

choosing the brand of cereal to eat for breakfast, the movie to watch on the weekends,

and the graduate programs to apply, they all involved decisions of choosing between the

characteristics of differentiated products. Therefore, the sellers must explore and identify

market demand and the factors that affect consumer choice.

Following the method of market-share-inversion is proposed by Berry (1994), there are

various estimation techniques exploited to estimate the structural model. Besides the well

known GMM method solved with a nested fixed-point algorithm (Berry, Levinsohn and

Pakes, 1995), rather than solving constraint optimization for every loop, Su and Judd (2012)

points out that the original problem is equivalent to formulate as a single mathematical

program with equilibrium constraints (MPEC). This solution circumvents running any loops

and drastically reduces the coding complexity and the total execution time. Nevertheless,

this proposition relies on solvers and users need to supply the Hessian matrix1. Comparing

the MPEC approach with the nested double loops, even though MPEC is considerably faster,

sometimes incorrect solutions are estimated while the results from the iteration approach are

oftentimes, more accurate, and robust.

Although this may sound like attempting to adopt the iteration procedure, some obstacles

seldom make this a cumbersome choice. The most common criticized problem from the

nested fixed-point algorithm is the concern of non-convergence. Under the requirements to

designate a tight convergence tolerance for both iterations, oftentimes, the algorithm will fail

to converge. In this case, researchers might deviate to a higher tolerance as an alternative but

suffer from producing off-estimates. Besides, the nested optimization problems are handled

1Supplying the Hessian matrix avoids additional computation burden from numerical approximation.
Moreover feeding the analytical sparse Hessian can speed up the optimization even further.
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with grid searches. For every round in the outer loop, it demands the inner loop to search for

a new converged candidate. This process ends when the outer loop converges which causes

the entire algorithm extremely time-consuming. Researchers have experience estimations

that take time from several hours to several months. This paper explores and verifies an

alternative approach, using Bayesian methods to estimate the demand model.

From a frequentist perspective, Bayesian techniques are asymptotically valid. Moreover,

Bayesian methods have computational advantages and sometimes, they are more straight-

forward to implement. In the field of Industrial Organization (IO), Bayesian approaches

are utilized to dodge having to find the extremum of a badly behaved objective function.

Indeed, the advantage of avoiding to compute complex integrals unlocks the path to solving

problems that are once being difficult working with traditional methods. Researchers have

provided Bayesian alternatives for classical IO problems. Gallant, Hong and Khwaja (2017)

utilize Bayesian methods to estimate dynamic games of firms competing through investment

in product quality which ultimately influences the products market shares and profitability,

and a model that includes latent state variables that are serially correlated. For consumer

inertia, Dubé, Hitsch and Rossi (2010) utilizes an MCMC algorithm to examine the inertia

in the consumers when making brand choices. The famous dynamic binary choice problem in

the literature illustrated by a bus engine replacement decision (Rust, 1987) is conducted un-

der a different framework by Norets and Tang (2014) where they combine Bayesian inference

with partial identification results.

To provide an alternative to Berry, Levinsohn and Pakes (1995), this paper follows a hy-

brid MCMC method proposed by Jiang, Manchanda and Rossi (2009) to estimate the random

coefficient logit model that is widely used in demand estimation. Besides demonstrating the

Bayesian method being a valid alternative to the classic GMM method, I additionally change

the prior specification for the distribution of the aggregate demand shocks.

The rest of this paper is organized as follows. Section 2 describes the background for

demand estimation. A summarized algorithm is provided in Section 3 and following with a

detailed discussion on each algorithm. Section 4 verifies the MCMC algorithms by a Monte

Carlo simulation and followed by the concluding remarks in Section 5.

2 The Demand Model

The random coefficient logit model defines the latent utility of consumer i purchasing product

j in market t by

uijt = Xjtβi + ξjt + εijt, j = 1, ..., J and t = 1, ..., T. (1)
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where Xjt is a vector of product characteristics, ξjt is the aggregated demand shock that is

common across individuals i, and εijt is the idiosyncratic shock that follows a type-I extreme

value distribution.

The aggregate shock is also known as the unobserved characteristics which capture the

factors that relate to vertical product differentiation. Comparing to the Almost Ideal De-

mand System (Deaton and Muellbauer, 1980) which demand is measured based on the price

and quantity of the J products including their competing commodities, economists suggest

bundling the product’s characteristics for consumers to choose from to resolve the curse

of dimensionality problem that leads to infeasible estimation of dealing with J2 elasticity

parameters in the product space.

Turning to examine demand on the characteristics space, this permits the modeling of

heterogeneous consumers as people are selecting the attributes instead of the product itself.

For example, when projecting iPhone X, 11, and 12 onto the characteristic space, these three

products are characterized by one variable, i.e. having two, three, and four camera sensors.

Early examples of the characteristics space models include the horizontal model (Hotelling,

1929) and the vertical model Shaked and Sutton (1982).

To estimate the mean tastes of the consumers, I deviate from using the product at-

tributes for X. Instead of directly estimate the preferences on different characteristics as

demonstrated in the common estimation procedure, I use brand dummy variables to extract

the taste coefficients of the brand fixed effects. Hence, X ⊂ RK includes the brand dummies

(one for each product) and the price.

2.1 Individual Heterogeneity

The random coefficients capture quality vertical differentiation. When assessing product

characteristics, every consumer exerts various valuation. For instance, photography enthusi-

asts care about the versatility of the iPhone’s camera system while the additional lenses are

useless to a user who primarily uses the phone to browse the web.

By preference decomposition, the taste parameter βi can be break up into two parts

βi = β + vi (2)

where β captures the average taste and vi denotes every individual’s preference deviation

from the crowd. Combining the group’s average taste with the aggregate demand shock, the

mean utility can be defined as follows:

δjt = Xjtβ + ξjt. (3)
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Combining Equation 2 and 3, Equation 1 can be rewritten as

uijt = Xjt(β + vi) + ξjt + εijt

= δjt +Xjtvi + εijt (4)

where the distribution of vi can be illustrated by the demographics supplied by the econo-

metricians or reasonable parametric assumption.

2.2 Market Share

The market share is the sales quantity of the product comparing to the sales performance

of the entire market. When observing sales information that includes price and quantity,

the product’s true market share can be directly calculated from the data. However, market

share can also be implied by the choice probabilities.

Following Equation 4, the probability for consumer i to choose product j to k in a fixed

market is depicted by the following derivation:

pij = pij(uij > uik, ∀j 6= k)

= pij(δj +Xjvi + εij ≥ δk +Xkvi + εik, ∀j 6= k)

= pij
[
(δj +Xjvi)− (δk +Xkvi) ≥ εik − εij, ∀j 6= k

]
=
∏
j 6=k

[
(δj +Xjvi)− (δk +Xkvi) ≥ εik − εij

]
The difference between two type-I extreme value shocks is distributed logistic

pij =
∏
j 6=k

e(δj+Xjvi)−(δk+Xkvi)

1 + e(δj+Xjvi)−(δk+Xkvi)
(5)

then the probability of consumer i choosing product j in any fixed market takes the following

closed form of multinomial logit:

pij =
eδj+Xjvi

1 +
J∑
k=1

eδk+Xkvi

. (6)

The choice of outside option2 when k = 0 is normalized to zero utility and the aggregation

of individual choice probability across all consumers yields the product market share for

2The outside option is to purchase the alternative which is excluded from the specified product (charac-
teristics) set.
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product j in market t:

sjt =

∫
eδjt+Xjtvi

1 +
J∑
k=1

eδkt+Xktvi

dG(vi) (7)

where G is the demographic distribution. Moreover, Equation 7 presents the relationship

between the implied market share sjt and the aggregate demand shock ξjt which is denoted

as follows:

sjt = h
(
ξjt
∣∣Xjt, β,Σ

)
∀j = 1, ..., J. (8)

3 The Sampler

To begin with, I start with a more in-depth discussion about the randomness in the random

coefficient. In the demand literature, the random part of the consumer’s preference vi consists

of two components. The demographics Di reveals the observed consumer characteristics and

some unobserved additional characteristics νi such as whether the consumer has a disabled

family member when considering to buy a car or the consumer owns a dog which will affect

their decision when buying a house. The preference formulation is presented as follows:

βi = β + ΠDi + Σνi (9)

whereDi is a vector of demographic variables whose distribution needs to be further identified

by the data, and νi follows a multivariate normal distribution. However, rather than bringing

additional demographics information into the model, the individual Heterogeneity can be

assumed normally distributed with valid reasons. For example, demographics represented

by income distribution captures the preference discrepancy between wealthy and poor people.

Indeed, different income levels exhibit disparate valuations to product characteristics.

However, when the scope of the market is considered far more broadly than a group of

different zip code areas or a city, a particular type of demographic structure can no longer

describe the average taste of the group. Hence, the distribution of the randomness in the

individuals’ preferences can be assumed following a normal distribution

βi = β + vi s.t. vi ∼ N
(
0,Σ

)
(10)

which can be specified as

βi ∼ N
(
β,Σ

)
and the covariance matrix Σ can be specified by the Cholesky factor
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Σ = C ′C s.t. C =


er11 r12 · · · r1k

0 er22 · · · r2k

...
...

. . .
...

0 0 · · · erkk .

 (11)

where diagonal elements are exponentiated to enforce positive-definiteness. The prior distri-

bution for r is considered as follows:

rjj ∼ N
(
0, σ2

rjj

)
for j = 1, ..., K

rjk ∼ N
(
0, σ2

roff

)
for j, k = 1, ..., K, j < k (12)

where σ2
rjj

and σ2
roff

are assumed with large variance and no correlation to avoid likely getting

negative values (steps) when moving along the random walk chain.

Contrasting to the nested fixed-point algorithm, this step effectively lowers the non-

convergence probability. During the Bayesian estimation in Algorithm 4, this reparameteri-

zation mitigates the issue of the possibility of a large proportion of draws in the algorithm

are rejected simply due to the failure on positive definiteness criterion.

Algorithm 1: Road-map Bayesian estimation of random coefficients model

1 Specify the priors for β (β0, Vβ), τ 2 (ω0, κ0), and r (elements in Σ; rjj, rjk)

2 Initiate δ0, τ 2, R (tolerance), ` (random walk step size)
3 for iteration← 1 to 10000 (large number) do
4 Execute Algorithm 2 (Contraction)
5 Execute Algorithm 3 (Gibbs)
6 Execute Algorithm 4 (Metropolis-Hastings)

7 Lists ← record β, δjt, Σ, τ 2 sequences
8 Discard lists’ items recorded during the burn-in period (first 3000 iterations)
9 Compute the second dimensional mean of the lists to obtain taste coefficients,

products mean utility, and individuals distribution’s covariance matrix

10 end

11 return δjt, pijt, β, τ 2, Σ

Finally, as discussed in Jiang, Manchanda and Rossi (2009), comparing to the structural

demand setup proposed by Berry (1994), one additional assumption is made to specify the

likelihood. The aggregate demand shocks are independently distributed across all products

j with identical variances

ξjt ∼ N
(
0, τ 2

)
. (13)
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The road-map of estimating random coefficients model by Bayesian analysis is presented

in Algorithm 1. Each step is going to be discussed in detail in the subsequent sections.

3.1 Estimate Mean Utility

The mean utility is specified by the product dummies Xs, the taste coefficients, and the

aggregate demand shock. The product taste coefficients and therefore the mean utility δ are

identified by minimizing the observed market share from the data and the shares implied by

choice probability.

To compute the implied market share, the integral in Equation 7 is calculated by simu-

lated integration. I simulate the market share by drawing from R individuals

sRjt
(
δjt,Σ

)
=

1

R

R∑
r=1

eδjt+
∑

r(Xjtv
r
i )

1 +
J∑
k=1

eδkt+
∑

r(Xktv
r
i )

(14)

where v ri is drawn from N(0, 1). Recall from Equation 7 and 10, given Σ, sjt is only a

function of δjt. Matching the observed shares and the market shares implied by the data,

Berry (1994) propose an inversion

δjt = sRjt
(
sjt,Σ

)−1
(15)

to recover the mean utility. The inevitability of sRjt is shown under general condition (Berry,

Gandhi and Haile, 2013). This inversion is done numerically by iterating over

δnjt = δn−1
jt + log(sjt)− log

(
sRjt
)

(16)

until |δnjt − δn−1
jt | < 10−14. As discussed in Dubé, Fox and Su (2012), a high tolerance can

propagate and prevent convergence of the outer loop in the nested fixed-point algorithm.

However, in my simulation, it turns out that the numerical error from the estimation of

mean utility can also impact the outcome of Bayesian estimation.

The steps for the contraction process are summarized in Algorithm 2. The covariance

matrix of the demographic distribution Σ is initialized with the diagonals multiplied by 100

or 200 to avoid a dogmatic prior. The mean utility and the consumer choice probability

obtained from the contraction algorithm are passed to Algorithm 4 to estimate the entries

in Equation 11 and the elements of the Jacobian matrix respectively. When the covariance

matrix is updated through the Metropolis-Hastings sampling (Section 3.3), the re-run of

Algorithm 2 depends on the accept-reject decision in Algorithm 4.
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Algorithm 2: Contraction: estimates the mean utility δjt

Input: sjt (observed market shares), X (brand dummies and price), Σ (variance of
demographic distribution), R (number of simulated individuals), M
(number of markets), Tolerance

Output: δjt (mean utility), pijt (consumer choice probability)
1 Tolerance← 10−14

2 for t← 1 to T do
3 while mean utility sequence difference > Tolerance do
4 Compute δjt +Xjtvi
5 Calculate consumer choice probability pijt by Equation 5
6 Calculate the implied market share by Equation 7
7 Numerically invert the market share by Equation 16 to obtain δnjt and δn−1

jt

8 mean utility sequence difference ← |δnjt − δn−1
jt |

9 end

10 end
11 return δjt, pijt

3.2 Gibbs Sampling

The average taste β and the covariance matrix of the aggregate demand shocks τ 2 is esti-

mated by a Gibbs sampler by performing a Bayes regression analysis on Equation 3 with the

conjugate priors specified as the following3:

ξjt ∼ N
(
0, τ 2

)
β ∼MVN

(
β0, Vβ̄

)
(17)

τ 2 ∼ IW
(
ω0, κ0

)
which I deviate from the prior specifications assumed by Jiang, Manchanda and Rossi (2009).

The sampling rounds for the average taste β and covariance of the aggregate demand shocks

τ 2 are drawn from the conditional posterior distributions:

π
(
β|δjt, τ 2

)
∼ N

[(
V −1

β
+
X ′jtXjt

τ 2

)−1(
V −1

β
β0 +

X ′jtδjt

τ 2

)
,

(
V −1

β
+
X ′jtXjt

τ 2

)−1
]

(18)

π
(
τ 2|δjt, β

)
∼ IW

[
ω0 + n, κ0 +

(
δjt −X ′jtβ

)′ (
δjt −X ′jtβ

)]
(19)

where n is the number of observations JT . The estimated β and τ 2 are passed on to

Algorithm 4 for the accept-reject sampler.

3For computational purposes, inverse-Gamma distribution is substituted by inverse-Wishart distribution.
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Algorithm 3: Gibbs sampling: estimate β and τ 2

Input: δ0 (initiate with mean utility from Algorithm 2), X (brand dummies and
price), τ 2 (variance of N), β0 (mean of MVN), Vβ (variance of MVN), ω0

(mean of IW), κ0 (variance of IW)
Output: β (average taste) and τ 2 (covariance of aggregate demand shock)

1 In the first loop, compute Equation 18 and 19 with parameters’ initial value

2 Update Equation 18 with new τ 2 and draw β

3 Update Equation 19 with new β and draw τ 2

4 return β, τ 2

3.3 Metropolis-Hastings Sampling

In the last part, we calculate the covariance matrix of the demographic distribution presented

in Equation 11. This describes the correlation between individuals. Comparing to Section

3.2, the full conditionals presented in Equation 24 is not analytically tractable. Therefore,

the estimation of r employs a random walk Metropolis chain.

The joint density of shares at time t can be obtained by adopting the Change-of-Variable

theorem by using the relationship between sjt and ξjt specified in Equation 8:

π
(
sjt|Xjt, β,Σ, τ

2
)

= φ
(
h−1

(
sjt|Xjt, β,Σ

)︸ ︷︷ ︸
ξjt

∣∣τ 2
) (
Jsjt→ξjt

)−1
for j = 1, ..., J (20)

where following from Equation 3

ξjt = δjt −Xjtβ (21)

which is updated by passing in δjt from Algorithm 2 and β is passed in from Algorithm 3.

The J × J Jacobian matrix at time t, Jsjt→ξjt , is given by∥∥∥∥∥∥∥∥∥


∂s1t
∂ξ1t

∂s1t
∂ξ2t

· · · ∂s1t
∂ξJt

...
...

. . .
...

∂sJt

∂ξ1t

∂sJt

∂ξ2t
· · · ∂sJt

∂ξJt


∥∥∥∥∥∥∥∥∥ (22)

where the elements are specified below:

∂sjt
∂ξkt

=


∫
−pijt(1− pikt)φ

(
θi|θ,Σ

)
dθi, if k = j∫

−pijtpiktφ
(
θi|θ,Σ

)
dθi, if k 6= j.

(23)

where pijt is the consumers’ choice probabilities specified previously with fixed market t in
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Equation 5. The elements r of the Σ matrix are updated by evaluating the following joint

log-posterior of all parameters

π
(
β, r, τ 2

∣∣ {sjt, Xjt}Tt=1

)
(24)

∝
T∏
t=1

(
J−1(sjt, Xjt, r)

J∏
j=1

h−1(sjt|Xjt, β, r)

)
︸ ︷︷ ︸

part-I

×
K∏
j=1

exp

{
−

r2
jj

2σ2
rjj

}
︸ ︷︷ ︸

part-II

×
K−1∏
j=1

K∏
k=j+1

exp

{
−

r2
jk

2σ2
roff

}
︸ ︷︷ ︸

part-III

where only the terms that relate to r are considered.

Algorithm 4: Metropolis-Hastings Sampling: estimate Σ

Input: δjt (mean utility obtained from Algorithm 2), pijt (consumer choice
probability obtained from Algorithm 2), β and τ 2 (average taste and
variance of N are obtained from Algorithm 3), X (brand dummies and
price), Σ (variance of demographic distribution), R (number of simulated
individuals), σ2

rjj
(variance of rjj), σ

2
roff

(variance of rjk)
Output: Σ (variance of demographic distribution)

1 In the first loop, compute Equation 24 with rii, rjk, initial values
2 Compute ξjt by Equation 21
3 Compute the updated r by Equation 25
4

// evaluate posterior densities with rcurrent (Dc) and rupdate (Du)

5 for t← 1 to T do
6 Compute the Jacobian matrix by Equation 22 and 23
7 D ← Compute the part-I log-posterior ++

8 end
9 Compute D ← D + part-II log-posterior + part-III log-posterior

10

// accept-reject criteria

11 if exp{Du −Dc} ≥ draw from U [0, 1] then
12 Σ← rupdate

13 Do not execute Algorithm 2 in next loop

14 end
15 return Σ, Algorithm 2 skipping decision

Follow from Equation 20, h−1(·) in the above part-I is drawn from MVN(0, τ 2). The

multivariate normal pdf is evaluated at ξjt which is calculated by Equation 21 for a particular

market t.

The proposal distribution is the multivariate normal distribution with a hyperparameter

“step size” (`) multiplied by the covariance matrix and τ 2 is passed from Algorithm 3. The
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updating of the elements r follows the equation

rupdate = rcurrent +MVN
(
0, IK · `

)
. (25)

For part-II and part-III4 in Equation 24, the two densities are evaluated from the multi-

variate normal distribution assumed in Equation 12. The acceptance decision is decided by

comparing a number η drawn from U [0, 1] and the probability

α = min

1,
π
(
β, rupdate, τ 2

∣∣ {sjt, Xjt}Tt=1

)
π
(
β, rcurrent, τ 2

∣∣ {sjt, Xjt}Tt=1

)
 .

The elements in Σ is updated if α ≥ η. However, if the decision results in a rejection,

then rcurrent is used to evaluate the joint posterior and at the same time, Algorithm 2 is

skipped in the next loop.

4 Simulation

In this section, I demonstrate a Monte Carlo simulation of this hybrid Bayesian approach.

Panel data is often used to study questions related to the filed of Industrial Organization.

For the considered product set, the demand for each brand is observed across different areas

(e.g. census regions, states, cities) and across different time periods (e.g. across 10 years).

For each particular time-region states, they are defined as different markets.

The data generating process involves three products and covers 300 markets. An example

for this scenario is the demand for iPad mini, iPad Air and iPad Pro of people in the fifty

states from 2014 to 2020. For each market, the demand collects the behavior of 10000

consumers.

The average preferences of these three iPad models and their prices are [0.1, 0.5, 0.9,

-0.2]. The random utility specified in Equation 10 is assumed without any correlation and a

variance of 0.3. The variance of the aggregate demand shock in Equation 13 is 0.2.

To initiate Algorithm 1, the mean utilities δ0 for each observations across all states and

periods are set to their own observed market shares observed from the data. The aggregate

shock γ2 is set to 0.5. The brand dummies and price’s coefficients are set to 0. For the

hyper parameters, there are 1,000 simulated individuals (R). Following the literature, the

contraction tolerance R is set to 10−14 and the random walk step size ` is set to 0.002.

There are two popular specifications for the random taste covariance matrix σ: the unre-

4The joint posterior only includes the kernels of the prior distributions specified in Equation 12.
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stricted covariance matrix and a restricted diagonal matrix. The restricted matrix benefits

the estimation due to sparsity which greatly improves the run-time. However, not knowing

the generating process, I will use an unrestricted covariance matrix in this estimation.

Figure 1: The τ 2 updating process in the Markov chain
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Note: The variance of the aggregate demand shock is updated by Algorithm 3. The true value is 0.2

and the parameter is initiated to 0.5.

As presented in Equation 12, both σr2
jj

and σr2
off

are initialized with an identity matrix

and multiplied by 100 to set up as a weak prior. The Bayesian updating process goes through

10,000 states and the burn-in period is set to 5,000.

For Algorithm 2, the simulated integral is averaged across 1,000 draws. The updating

process of τ is illustrated in Figure 1. Starting from the initial value 0.5, the chain converges

toward 0.2 in 1,000 cycles. After discarding the burn-in values, the average of the rest of the

states is 0.1948.

Next, the average product taste is estimated by Algorithm 3. Starting from the initial

values of [0, 0, 0, 0], the chain moves close to the true values also at around 1,000 iterations.

Presented in Figure 2, the red, blue, and purple lines corresponds to the average taste

for products one, two, and three. The green sequence depicted the average taste on the

products’ price. The updating process has 10,000 iterations. After the burn-in, the mean

preference values are [0.1279, 0.5346, 0.9209,−0.2006].

It is worth mentioning that in the general settings, the aggregate shock is endogenous.

The counter price endogeneity, a simultaneous equation estimation can be added to Algo-

rithm 3 where a vector of instruments X̃jt will be added into the sampler.
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Figure 2: The estimation of β
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Note: The updating process of β is responsible by Algorithm 3. The true average preference for the

three products and their prices (green line) is [0.1, 0.5, 0.9,−0.2] and the chain starts updating from

[0, 0, 0, 0] for 10,000 iterations.

Finally, I also report the estimated covariance matrix of the demographic distribution in

Equation 26. Σ is estimated by Algorithm 4 and used as inputs in Algorithm 2.

Σ =


0.0147 0.0271 0.0538 −0.0053

0.0271 0.1709 0.1273 −0.1023

0.0538 0.1273 0.6328 0.1914

−0.0050 −0.1023 0.1914 0.5547

 (26)

The estimation uses an unrestricted matrix with all the diagonal elements being positive

values which is an advantage of the reparametization illustrated in Equation 11.

5 Conclusion

This article demonstrates demand estimation with a Bayesian approach and provides a prac-

titioner’s guide regarding the details when implementing the algorithm. Under the Bayesian

framework with modified aggregate demand shock prior, the random coefficients can be es-

timated with two MCMC methods. Comparing to the nested fixed-point algorithm, this

approach avoids the dreadful non-convergence predicament. Furthermore, without optimiz-

ing two nested loops, the Bayesian approach considerably appears to be more efficient.
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